

VS5595W-XG1A

Product Family	VS Series Scroll Compressors
Application	AC, HBP
Voltage	380-420V 3PH 50Hz, 460V 3PH 60Hz
Refrigerant	R-22, R-407C
Product Technology	Scroll

1 Specification

1.1 Basic Specification

Model	VS5595W-XG1A (Including Extended Model)		
Туре	Low Side Shell Design Scroll Compressor		
Application	Air conditioning		
Refrigerant	R407C		
Displacement(cc/rev)	123		
Cooling Capacity(W) ^(a)	22180		
Input Power(W) ^(a)	6770		
RLA(A) ^(a)	12.9		
Cooling COP(W/W) ^(a)	3.28		
Power Supply	380-420V/3~/50Hz or 460V/3~/60Hz		
Min. Operating Voltage(V)	342		
Max. Operating Voltage(V)	462		
LRA(A)	117		
Max. Operating Current(A) ^(b)	17.6		
Rated Speed(r/min) ^(a)	2900		
Compressor Weight(With Oil)(kg)	53		
ОіІ Туре	POE		
Oil Kinematic Viscosity(cSt, 40℃)	32		
Oil Density(kg/L, 20℃)	0.977		
Primary Charge(L)	2.7		
Recharge(L)	2.55		
Oil Circulation Rate ^(a)	≤1%		
Rated Sound(Sound Power)(dBA) ^(c)	73		
Max. Operating Sound in Running Envelope (Sound Power)(dBA)	78		
Vibration Displacement Peak-Peak(mm) ^(d)	≤0.12		
Moisture(mg)	≤1100		
Impurity(mg)	≤140		
LVS(V) ^(e)	323		
MOV (V) ^(f)	342		
Start Capacitor(µF/V)	/		
Start Relay	/		
Run Capacitor(µF/V)	/		
IP Class of Terminal Box	IP54		
Compressor Color	Black		

1.2 Motor Parameters

Motor Type	Three-phase asynchronous motor		
Motor Pole	2		
Motor Insulation Class(℃)	130(B Class)		
Line to Line Resistance UV(CS)(Ω , 25°C)	1.09(±10%)		
Line to Line Resistance UW(CR)(Ω , 25°C)	1.09(±10%)		
Line to Line Resistance VW(SR)(Ω , 25°C)	1.09(±10%)		
Dielectric Strength	2000VAC / 1s / 50Hz, Leakage Current≤5mA		
Insulation Resistance(MΩ)	≥20		
Ground Resistance(Ω)	≤0.1		

1.3 Safety Operating Limit

htness Test Pressure(MPa) 3.8-4.0				
Max. Operating Pressure				
High Side(MPa)	H3.0/L2.0			
Low Side(MPa)	H3:0/L2:0			
Compressor FreeSpace(Without Oil)				
High Side(L)				
Low Side(L)	H0.9/L6.5			
Max. Refrigerant Charge(kg)	See Notes			
	≤125			
Discharge Temperature Limit(°C)	(120mm to compressor discharge connection			
	and well insulated)			
Start-Stop Interval	See Notes			

Performance Condition:

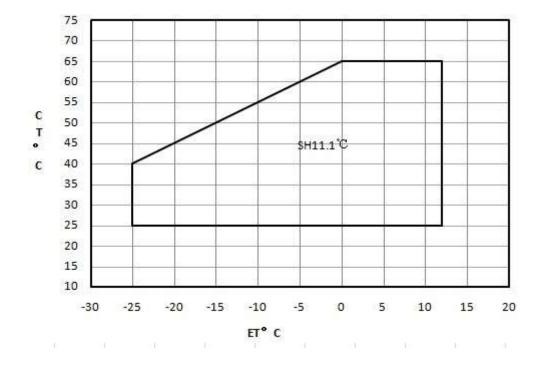
Condition	Condition Description
а	Rated Condition
b	Max. Load Condition, 90% Rated Voltage
С	Rated Condition, A Weighted Sound Power
d	Rated Condition, Max Operating Normal Displacement of
	Compressor Housing
е	Discharge Pressure and Suction Pressure: Saturated Refrigerant
	Pressure at 40℃
f	Max. Load Condition

2 Rated Condition, 48 Hours Break-in-Running before implementing Performance and Sound Testing

ltem	Rated Condition	Max. Load Condition
E.T.(°C)/C.T.(°C)/S.H.(K)/ S.C.(K)/A.T.(°C)	7.2/54.4/11.1/8.3/35	11.9/65.5/11.9/8.3/46.1
Cooling Capacity Deviation	≥95.0%	-
Power Deviation	≤105.0%	-
COP Deviation	≥95.0%	-

3 Internal Protector

Protection Method	Config	Parameter		
		Vendor	Vendor1	Vendor2
		Model	35HM571-XX	
Internal Overload	With	Open Temp.(℃)	135±5	
Protector	VVIUI	Close Temp. (°C)	61±9	
		Chart Times Trip	87A	А
		Short Time Trip	2-10s	S
Internal Pressure	With	2.76-3.10MPa		
Relieve Valve	VVILII	2.76-5.10MPa		


4 Accessory

VS5595W-XG1A				
ltem	Name	P.N.	PCS	
1	Grommet	070-0003-00	4	
2	Sleeve	010-0014-00	4	
3				
4				
5				

5 Compressor OperatingEnvelope

5.1 Compressor Operating Envelope

- 5.2 EVI control logic(only for EVI module)
 - Recommend system subcooling 5K
 - DLT \leq 95 °C, control superheat of injection line=5K
 - DLT>95℃,control DLT=95℃
 - Max injection pressure≤2.0MPa

6 Compressor Performance Sheet

- Performance Based on Superheat is within the OperatingEnvelope, Subcooling after Condenser is 8.3K;
- Performance Calculated by Coefficients of Polynomial is Only Suitable for the Condition within Operating Envelope
- Capacity, Power can be Calculated by Coefficients of Polynomial

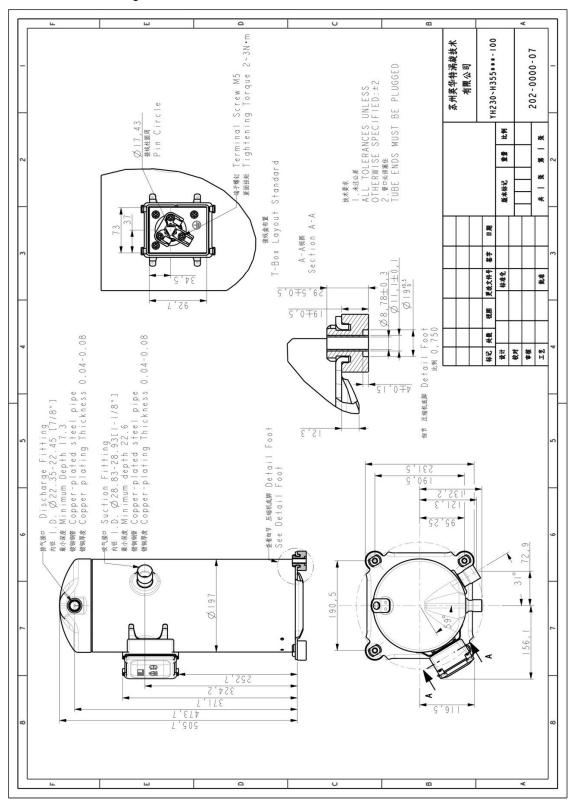
6.1 Performance Table

ltem	E .T.(℃)	-20	-10	0	10
nem	С.Т.(°С)				
Heating	50				
Cap.(W)	40				
(Cooling Cap.	30				
Cooling Con	50	7628	12129	18054	25735
Cooling Cap. (W)	40	8667	13563	19969	28216
(**)	30	9676	14894	21708	30448
	50	5974	6103	6157	6231
Power(W)	40	4759	4926	5015	5120
	30	3815	4005	4115	4237

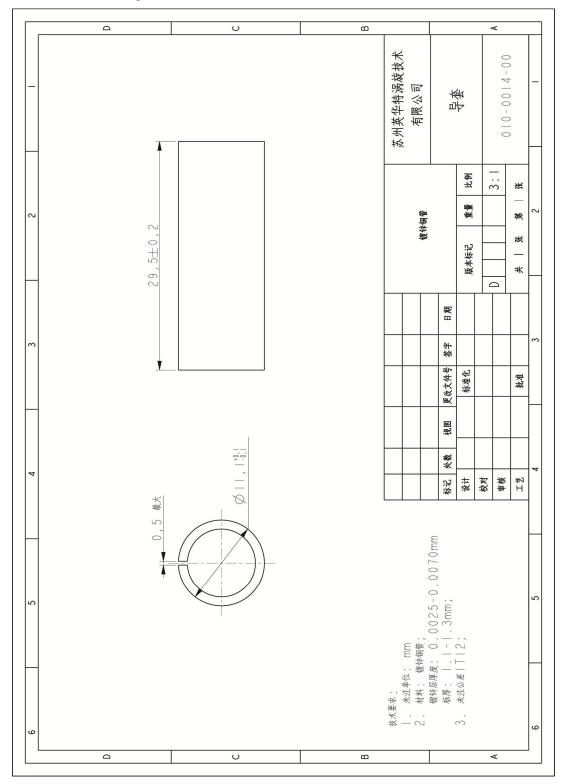
6.2 Ten Coefficients of Polynomial

Expression	z = p0 + p1*x + p2*y + p3*x^2 + p4*x*y + p5*y^2 + p6*x^3 + p7*x^2*y + p8*x*y^2 + p9*y^3			
	z:Cooling Capacity(W) or Power (W)			
	Specially: Heating Capacity(W)=Cooling Capacity(W)+Power (W)			
Description	x: E.T. ℃			
	y: C.T. ℃			
	p0~p9: Coefficients of P	olynomial		
Cooling Cap.	Value	Power		
Factor	Value	Factor	Value	
p0	25916.381568	р0	1746.525201	
p1	863.23776 p1 6.7164		6.716407	
p2	-115.90656 p2 92.976437			
р3	10.910592 p3 0.018557			
p4	-1.936704 p4 0.331462			
р5	-0.790879 p5 -1.02		-1.027	
р6	0.055137 p6 0.015707		0.015707	
р7	-0.042626 p7 0.001591		0.001591	
p8	-0.036635 p8 -0.007378			
р9	-0.00072 p9 0.018632			

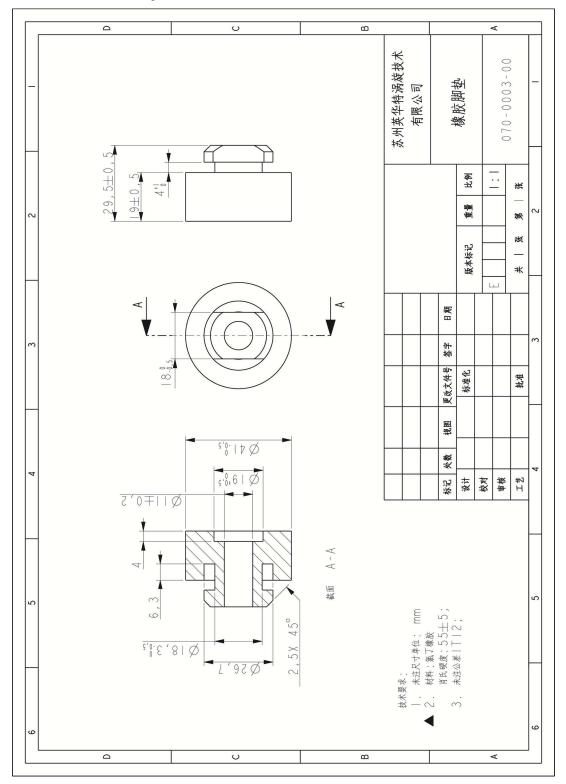
Notes: Coefficients of polynomial are based on the fitting results of some sample data, which can be used as a reference of compressor selection, but cannot completely eliminate customer's test.



- 7 Notes
- 7.1 It is not allowed to perform vacuum in the system by using the refrigeration compressor. The compressor can start only after the refrigerant charged. In some cases, such as on the field site, if it is limited by the situation that can't charge the required volume of refrigerant, 50% of the required refrigerant is charged necessary before the compressor starts. Double check the system and make sure everything is under safe status, then power on the compressor and charge the remained refrigerant when the compressor is running.
- 7.2 It is not allowed to charge the refrigerant from the suction or discharge line closes to the compressor. The charge port should be arranged on the connection pipe of suction line accumulator or receiver, which is on the side far away to the compressor, to avoid the liquid refrigerant flood back.
- 7.3 Refrigerant charge limitation: the ratio between the weight of oil and refrigerant should be >=0.4.
- 7.4 It is not allowed to vacuum by compressor, not allowed to run the compressor without refrigerant, and not allowed to run the compressor on the reversed direction for long duration.
- 7.5 The compressor can only work with approved refrigerant.
- 7.6 The compressor is not allowed to work outside its envelope, the system should guarantee the suction line superheat and avoid the liquid refrigerant flood back.
- 7.7 When the suction and discharge plugs are removed, the assembly and brazing should be done in 15 minutes.
- 7.8 The frequently start/stop should be avoided. The suggested minimum continuous running time is 10 minutes to guarantee the safe oil level (>=50% initial charge volume), the suggested minimum interval duration between start and stop is 3 minutes.
- 7.9 The deviation of supplied voltage should be less than +/-10% of rated voltage.
- 7.10 A 90W crankcase heater is recommended to avoid the refrigerant migration during the off circle and flood start. The crankcase heater should be power on 12 hours earlier than the first start or restart after long duration off.
- 7.11 The system should be equipped with necessary protection devices, such as pressure, temperature, oil return, overcurrent and phase fault, etc.
- 7.12 The compressor is not allowed to lay down or place upside down during transportation, stock and installation. The maximum inclination is 15° when the compressor is running.


8 Drawings

8.1 Outline Drawing



8.2 Sleeve Drawing

8.3 Grommet Drawing

